skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roland, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Attosecond science has demonstrated that electrons can be controlled on the sub-cycle time scale of an optical waveform, paving the way towards optical frequency electronics. However, these experiments historically relied on high-energy laser pulses and detection not suitable for microelectronic integration. For practical optical frequency electronics, a system suitable for integration and capable of generating detectable signals with low pulse energies is needed. While current from plasmonic nanoantenna emitters can be driven at optical frequencies, low charge yields have been a significant limitation. In this work we demonstrate that large-scale electrically connected plasmonic nanoantenna networks, when driven in concert, enable charge yields sufficient for single-shot carrier-envelope phase detection at repetition rates exceeding tens of kilohertz. We not only show that limitations in single-shot CEP detection techniques can be overcome, but also demonstrate a flexible approach to optical frequency electronics in general, enabling future applications such as high sensitivity petahertz-bandwidth electric field sampling or logic-circuits. 
    more » « less
  2. Abstract Plate motion obliquity along the dominantly transform Queen Charlotte plate boundary (QCPB) peaks offshore Haida Gwaii. To investigate the effects of obliquity on plate boundary deformation, we analyze continuous seismic waveforms from temporary and permanent stations from 1998 to 2020 to generate a catalog of ∼50,000 earthquakes across Haida Gwaii. We use an automated technique based on auto‐regressive phase detection and onset estimation to obtain the initial seismic catalog, integrate existing catalogs, invert for 3D velocity structure using data from the best constrained period, and relocate the entire catalog using the new 3D velocity model. We investigate the seismically active sections of the transcurrent Queen Charlotte fault (QCF), noting that little seismicity locates directly along its bathymetrically defined trace. Instead, seismicity illuminates a complex system of segmented structures with variable geometries along strike. Other clusters highlight active shallow faults within the highly deformed Queen Charlotte terrace. Few aftershocks appear on the thrust plane of the 2012Mw7.8 Haida Gwaii earthquake except near its inferred intersection with the QCF at 15–20 km depths, suggesting elevated residual stress at the juncture of slip‐partitioning. Deep crustal seismicity (up to ∼20 km depths) beneath central Haida Gwaii aligned parallel to the strike of the thrust plane may represent landward underthrusting of the Pacific plate. Our results suggest possible coseismic strike‐slip rupture on the QCF during the 2012 earthquake and add support to the thesis that highly oblique transform boundaries are viable settings for subduction initiation. 
    more » « less
  3. NORTH AMERICA’S LARGEST EARTHQUAKES and most powerful volcanic eruptions occur along the Alaska Peninsula subduction zone, a meeting of two tectonic plates that sweeps an arc across the North Pacific margin between Alaska and Russia. However, studies that would help us understand these hazards are few and far between in this remote, sparsely populated region. A major new shoreline- crossing community seismic experiment spans the Alaska Peninsula subduction zone, with the intention of filling gaps in our knowledge of this region. Information that we collect along this margin can provide direct information about many first- order questions about subduction zone processes that influence earthquakes and volcanism. 
    more » « less
  4. null (Ed.)